54 research outputs found

    Employing Modular Polyketide Synthase Ketoreductases as Biocatalysts in the Preparative Chemoenzymatic Syntheses of Diketide Chiral Building Blocks

    Get PDF
    SummaryChiral building blocks are valuable intermediates in the syntheses of natural products and pharmaceuticals. A scalable chemoenzymatic route to chiral diketides has been developed that includes the general synthesis of α-substituted, β-ketoacyl N-acetylcysteamine thioesters followed by a biocatalytic cycle in which a glucose-fueled NADPH-regeneration system drives reductions catalyzed by isolated modular polyketide synthase (PKS) ketoreductases (KRs). To identify KRs that operate as active, stereospecific biocatalysts, 11 isolated KRs were incubated with 5 diketides and their products were analyzed by chiral chromatography. KRs that naturally reduce small polyketide intermediates were the most active and stereospecific toward the panel of diketides. Several biocatalytic reactions were scaled up to yield more than 100 mg of product. These syntheses demonstrate the ability of PKS enzymes to economically and greenly generate diverse chiral building blocks on a preparative scale

    Effects of Eupalinilide E and UM171, Alone and in Combination on Cytokine Stimulated Ex-Vivo Expansion of Human Cord Blood Hematopoietic Stem Cells

    Get PDF
    Eupalinilide E was assessed for ex-vivo expansion activity on hematopoietic stem cells (HSCs) from human cord blood (CB) CD34+ cells in serum-free, SCF, TPO and FL stimulated 7 day cultures. Eupalinilide E ex-vivo enhanced phenotyped (p) HSCs and glycolysis of CD34+ cells isolated 7 days after culture as measured by extracellular acidification rate, but did not alone show enhanced NSG engrafting capability of HSCs as determined by chimerism and numbers of SCID Repopulating cells, a quantitative measure of functional human HSCs. This is another example of pHSCs not necessarily recapitulating functional activity of these cells. Lack of effect on engrafting HSCs may be due to a number of possibilities, including down regulation of CXCR4 or of the homing capacity of these treated cells. However, Eupalinilide did act in an additive to synergistic fashion with UM171 to enhance ex vivo expansion of both pHSCs, and functionally engrafting HSCs. While reasons for the disconnect between pHSC and function of HSCs with Eupalinilide E alone cultured CB CD34+ cells is yet to be determined, the data suggest possible future use of Eupalinilide and UM171 together to enhance ex vivo production of CB HSCs for clinical hematopoietic cell transplantation

    Kevin DalbyITC AND NMR SPECTROSCOPY BINDING STUDIES OF meso- OCTAMETHYL-CALIX[4]PYRROLE AND ITS DERIVATIVES

    No full text
    To my wife and little one. Acknowledgements I’d like to start by thanking my advisor Jonathan Sessler for allowing me the opportunity to work in his lab. His guidance and mentorship will not be forgotten. Throughout my graduate career I have had the opportunity to work with grea

    Syntheses of (+)-Complanadine A and Lycodine Derivatives by Regioselective [2 + 2 + 2] Cycloadditions

    No full text
    The dimeric alkaloid complanadine A has shown promise in regenerative science, promoting neuronal growth by inducing the secretion of growth factors from glial cells. Through the use of tandem, cobalt-mediated [2 + 2 + 2] cycloaddition reactions, two synthetic routes have been developed with different sequences for the formation of the unsymmetric bipyridyl core. The regioselective formation of each of the pyridines was achieved based on the inherent selectivity of the molecules or by reversing the regioselectivity through the addition of Lewis bases. This strategy has been successfully employed to provide laboratory access to complanadine A as well as structurally related compounds possessing the lycodine core

    Syntheses of (+)-Complanadine A and Lycodine Derivatives by Regioselective [2 + 2 + 2] Cycloadditions

    No full text
    The dimeric alkaloid complanadine A has shown promise in regenerative science, promoting neuronal growth by inducing the secretion of growth factors from glial cells. Through the use of tandem, cobalt-mediated [2 + 2 + 2] cycloaddition reactions, two synthetic routes have been developed with different sequences for the formation of the unsymmetric bipyridyl core. The regioselective formation of each of the pyridines was achieved based on the inherent selectivity of the molecules or by reversing the regioselectivity through the addition of Lewis bases. This strategy has been successfully employed to provide laboratory access to complanadine A as well as structurally related compounds possessing the lycodine core
    • …
    corecore